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Abstract. The Green’s function formalism is extended here to multi-point posed boundary-value problems of a
special type occurring in some situations in applied mechanics. Problems which reduce to special systems of linear
ordinary differential equations are considered. These are formulated on finite weighted graphs in such a way that
every equation in the system governs a single unknown function and is defined on a single edge of the graph. The
individual equations are put into a system format by means of contact and boundary conditions at the vertices
and endpoints of the graph, respectively. Based on such a statement, the notion of the matrix of Green’s type is
introduced. Two methods are proposed for the analytic construction of such matrices. Illustrative examples from
different areas of applied mechanics are presented.
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1. Introduction

Many authors (see, for example, [1–7]) recommend the computational utilization of the
Green’s function approach to problems of applied mathematical physics. However, the practi-
cal use of these functions for actual computations in engineering and science is substantially
limited because of a lack of their appropriate representations available in the literature. This
situation reflects the fact that the construction of Green’s functions for boundary-value prob-
lems of mathematical physics is not a routine exercise, even for problems with relatively
simple formulations. In an attempt to contribute to this challenging area, we have proposed in
[8, 9] and developed in [10, 11] a special technique for constructing Green’s functions. This
technique was originally suggested for elliptic mixed-type boundary-value problems. It has
proven to be productive for a variety of problems in applied continuum mechanics (see [12,
pp. 20–59, 79–105, 108–146]).

Classically the Green’s function formalism is utilized in situations where governing differ-
ential equations have continuous coefficients. However, in [2, 7, 10] attempts were undertaken
to extend the Green’s function formalism to problems of continuum mechanics, formulated
throughout piecewise homogeneous regions, yielding discontinuity of coefficients in the gov-
erning differential equations. Later in [11, pp. 15–20], [12, pp. 63–105, 136–146], and [13, 14],
an effort has been put forth to implement this formalism for treating the so-called multi-point
posed boundary-value problems which model various situations in continuum mechanics for
piecewise homogeneous media.

In the earlier works [2], [11, pp. 68–70], and [12, pp. 15–17] an attempt has been undertak-
en to introduce the notion of the matrix of Green’s type. However, the range of application of
that notion is limited to the sandwich type of material inhomogeneity. With this in mind, the
author’s intention in the present study is to introduce the notion of the matrix of Green’s type
in a different way. The objective is to provide an extension of the Green’s function formal-
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Figure 1. A finite graphR hosting a system of differential equations.

ism to multi-point posed boundary-value problems which model phenomena of continuum
mechanics occurring in complex assemblies. For notational convenience, the governing sys-
tems of differential equations are set up on finite weighted graphs. This allows a considerably
systematic analysis.

2. Definition of the matrix of Green’s type

A finite weighted graphR is considered, one containingm endpoints,Eh, (h = 1;m) and
r vertices,Vk, (k = 1; r) joined byn edges,ei(i = 1; n) (see Figure 1). Let positive real
numbersli, (i = 1; n), representing the lengths of the corresponding edgesei, be regarded
as their weights. Suppose also that every edgeei of R is occupied with a conductive material
(of either thermal or electrical, or any other relevant nature) whose conductivitypi(x) is a
continuously differentiable function of local edge longitudinal coordinatex.

Let ui(x) represent the unknown function (temperature, electric potential, etc.) defined
throughout the edgeei of R. We will determine the set of these functions by the following set
of differential equations

d
dx

�
pi(x)

dui(x)
dx

�
+ qi(x)ui(x) = �fi(x); x2 (0; li); (i = 1; n): (1)

We put these individual equations into a system format by assigning the set of contact
conditions

u1(Vk) = � � � = udk(Vk);
dkX
h=1

ph(Vk)
duh(Vk)

dx
= 0; (k = 1; r) (2)

at each of the verticesVk, with dk being their degrees. Notice that for notational convenience,
in formulating these conditions, we use a ‘local’ numbering of the edges incident to the vertex
Vk. It can easily be seen that the number of the contact conditions assigned at each vertex
equals the degree of the vertex. Clearly, the contact conditions above describe continuity and
conservation of energy at every vertexVk of R. In addition, the boundary conditions

�h

dui(Eh)

dx
+ �hui(Eh) = 0; (h = 1;m) (3)

are imposed at each of the endpointsEh of R. This implies thatui(x) in the equations above
are defined on the end edgesei incident toEh.
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From graph theory, it follows that the total number of contact and end conditions posed by
Equations (2) and (3) equals 2n. In this study, we will be focusing on the influence function
(matrix) which represents the response of the entire system to a unit energy source acting at
an arbitrary points within an arbitrary edge ofR. Notice that the emphasis in this study is on
boundary value problems of the type in Equations (1)–(3). However, the results of this work
can readily be extended to problems formulated for differential equations of higher order.
Later in this paper, we will consider, for example, some formulations from Kirchhoff beam
theory, which involve equations of the fourth order on each of the edges ofR.

We are now in a position to extend the conventional definition of the Green’s function, so
as to make it valid for the multi-point posed boundary-value problem of the type in Equations
(1–3).

DEFINITION. An n � n matrixG(x; s), whose entriesgij(x; s) are defined forx2 ei and
s2 ej on R, is referred to as thematrix of Green’s typeof the homogeneous(fi(x) � 0)
boundary-value problem corresponding to that posed by Equations (1)–(3), if for any fixed
value ofs, the entriesgij(x; s) have the following properties:

(1) Forx 6= s, the entriesgii(x; s) of the principal diagonal(i = j) represent continuous
functions ofx on ei, have continuous partial derivatives with respect tox up to the second
order included, and satisfy the homogeneous(fi(x) � 0) equations corresponding to those in
Equation (1).

(2) At x = s, the entriesgii(x; s) of the principal diagonal are continuous functions ofx,
whereas their partial derivatives of the first order with respect tox are discontinuous functions,
provided

@gii(s+ 0; s)
@x

�
@gii(s� 0; s)

@x
= �

1
pi(s)

:

(3) The peripheral(i 6= j) entriesgij(x; s) ofG(x; s) are continuous functions ofx2 ei for
any value ofs2 ej, have continuous partial derivatives with respect tox up to the second order
included, and satisfy the homogeneous equations corresponding to those in Equation (1).

(4) All the entriesgij(x; s) of G(x; s) satisfy the contact and end conditions (which they
are involved in) in Equations (2) and (3), in the sense that each of these conditions is satisfied
for s belonging to any of the edgesej , (j = 1; n).

In the discussion that follows, the argumentsx ands of the matrix of Green’s type are
conventionally referred to as theobservation pointand thesource point, respectively.

3. Existence and uniqueness

The following theorem can be formulated to stipulate the existence and uniqueness of the
matrix of Green’s type for the homogeneous boundary value problem corresponding to that
posed by Equations (1–3).

THEOREM 1.If the multi-point posed boundary value problem stated by Equations(1–3)has a
unique solution, then there exists a unique matrix of Green’s typeG(x; s) of the corresponding
homogeneous problem(that is, the corresonding homogeneous equations subjected to the
contact and boundary conditions imposed by Equations(2) and(3)).

If the fundamental solution sets(ui1(x) and ui2(x), (i = 1; n)) of the homogeneous
equations corresponding to those in Equation (1) are available, then the proof of this theorem
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is straightforward. It can readily be accomplished by the standard method based on the defining
properties of the matrix of Green’s type. Notice that such a proof suggests the procedure for
the actual construction of matrices of Green’s type for boundary value problems posed on
graphs.

Another effective procedure of obtaining matrices of Green’s type for homogeneousbound-
ary value problems of the type posed on graphs by Equations (1–3) is based on Lagrange’s
method of variation of coefficients. To proceed with this method, we introduce a vector-
functionU(x) whose componentsUi(x), (i = 1; n) are defined in terms of the solutionsui(x)
of Equation (1) as

Ui(x) =

(
ui(x); for x2 ei;

0; for x2Rnei:

We also introduce a vector-functionF(x) whose componentsFi(x) are defined in terms of
the right-hand side functionsfi(x) of Equation (1) in the form

Fi(x) =

(
fi(x); for x2 ei;

0; for x2Rnei:

The following theorem can be proved in the standard way to determine the solution of the
boundary value problem posed by Equations (1–3) in terms of the matrix of Green’s type of
the corresponding homogeneous problem.

THEOREM 2.If G(x; s) represents the matrix of Green’s type of the homogeneous boundary
value problem corresponding to that in Equations(1–3), then the solution of the problem
posed by Equations(1–3)onR can be written as

U(x) =
Z
R
G(x; s)F(s)dR(s); x2R; (4)

where the integration is carried out over the entire graphR. The converse is also true. That
is, if the solution of the problem posed by Equations(1–3) onR is obtained in the form of
the integral in Equation(4), then the kernelG(x; s) of that integral represents the matrix of
Green’s type for the corresponding homogeneous boundary-value problem.

Clearly, this theorem suggests that, once the solution of the original problem posed by
Equations (1–3) is expressed in terms of the integral in Equation (4), the kernelG(x; s) of
such an integral represents the matrix of Green’s type of the corresponding homogeneous
problem.

A version of the method of variation of coefficients is proposed below to obtain an integral
representation of the form in Equation (4) for the solution of the nonhomogeneous boundary-
value problem posed by Equations (1–3).

In doing so, we again recall the fundamental solution setsui1(x) andui2(x) of the homo-
geneous equations corresponding to those in Equation (1). The general solutionui(x) of
Equation (1) is sought as follows

ui(x) = Di1(x)ui1(x) +Di2(x)ui2(x); i = 1; n: (5)
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Based on that and following the standard procedure of the method of variation of coeffi-
cients, we obtain the well-posed systems of linear algebraic equations 

ui1(x) ui2(x)

u0i1(x) u0i2(x)

!
�

 
D0

i1(x)

D0

i2(x)

!
=

 
0

�fi(x)=pi(x)

!
; i = 1; n

in the derivatives of the coefficientsDi1(x) andDi2(x) of ui(x) from Equation (5). From
these systems it follows that

D0

i1(x) =
ui2(x)fi(x)

pi(x)Wi(x)
; D0

i2(x) =
ui1(x)fi(x)

pi(x)Wi(x)
; i = 1; n;

whereWi(x) = ui1(x)u
0

i2(x) � ui2(x)u
0

i1(x) represent the Wronskians of the fundamental
solution setsui1(x) andui2(x).

Integration of the derivativesD0

i1(x) andD0

i2(x) yields

Di1(x) =

Z x

0

ui2(s)fi(s)

pi(s)Wi(s)
ds+Ei1; i = 1; n;

Di2(x) = �

Z x

0

ui1(s)fi(s)

pi(s)Wi(s)
ds+Ei2; i = 1; n;

whereEi1 andEi2 represent undetermined coefficients. By substituting these expressions for
Di1(x) andDi2(x) in Equation (5), we can rewrite the latter as

ui(x) = ui1(x)

Z x

0

ui2(s)fi(s)

pi(s)Wi(s)
ds� ui2(x)

Z x

0

ui1(s)fi(s)

pi(s)Wi(s)
ds

+Ei1ii1(x) +Ei2ui2(x); i = 1; n:

Upon combining the integral terms in the equation above, we finally obtain the general
solutions of Equation (1) in the form

ui(x) =

Z x

0

ui1(x)i2(s)� ui2(x)ui1(s)

pi(s)Wi(s)
fi(s)ds

+Ei1ui1(x) +Ei2ui2(x); x2 [0; li]; i = 1; n: (6)

Upon satisfying the contact and boundary conditions in Equations (2) and (3), whose total
number equals 2n, we can obtain the undetermined coefficientsEi1 andEi2 above, of a total
number of also 2n. This yields a well-posed system of linear algebraic equations which leads
finally to the integral representation of the form in Equation (4) for the solution of the problem
under consideration. The kernel of that integral represents the matrix of Green’s type of the
problem.

In the following section, we describe this procedure in detail, while applying it to practical
situations occurring in continuum mechanics.

4. Some applications

We will here apply the matrix of Green’s type formalism to some problems of continuum
mechanics, formulated in media whose properties are discontinuous functions of the space
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Figure 2. An assembly of heat conductive rods.

variables. The influence matrices will be constructed for steady-state heat conduction in an
assembly of rods, for the bending of multi-spaned beams, and for the two-dimensional potential
field on a joined shell of revolution.

4.1. STEADY-STATE HEAT CONDUCTION IN AN ASSEMBLY OF RODS

Consider an assembly of rods (see Figure 2), each of which is composed of a homogeneous
material whose heat conductivity ispi.

On the weighted graph associated with the assembly above, we formulate the following
multi-point posed boundary-value problem

pi
d2ui(x)

dx2 = �fi(x); x2 (0; li); i = 1;4; (7)

u1(l1) = u2(l2) = u3(l3); (8)

p1
du1(l1)

dx
+ p2

du2(l2)

dx
+ p3

du3(l3)

dx
= 0; (9)

u3(0) = u4(l4); (10)

p3
du3(0)

dx
� p4

du4(l4)

dx
= 0; (11)

u1(0) = u2(0) = u4(0) = 0; (12)

which describes the steady-state heat-conduction phenomenon in the assembly. Hereli, (i =
1;4) represent the lengths of the rods.

In compliance with the procedure of the method of variation of coefficients described in
Section 3, we seek the general solutions of Equation (7) in the form

ui;g(x) = Di1(x) +Di2(x)x; i = 1;4;

which is ultimately reduced in this case (see Equation (6)) to

ui(x) =

Z x

0

s� x

pi
fi(s)ds+Ei1 +Ei2x; x2 [0; li]; i = 1;4: (13)
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We must determine the coefficientsEi1 andEi2, (i = 1;4) in Equation (13) by satisfying the
contact and boundary conditions posed by Equations (8–12). The conditions in Equation (12)
yield E11 = E21 = E41 = 0. For the rest of the coefficients, we obtain the following well-
posed system of linear algebraic equations written as

0
BBBBBB@

l1 �l2 0 0 0

l1 0 �1 �l3 0

p1 p2 0 p3 0

0 0 1 0 �l4

0 0 0 p3 �p4

1
CCCCCCA
�

0
BBBBBB@

E12

E22

E31

E32

E42

1
CCCCCCA
=

0
BBBBBB@

A2 �A1

A3 �A1

B1 +B2 +B3

A4

�B4

1
CCCCCCA
; (14)

where

Ai =

Z li

0

s� li
pi

fi(s)ds; Bi =

Z li

0
fi(s)ds; i = 1;4:

For the sake of simplicity, we assume in what follows that the edges of the graph have
equal lengths, that isl1 = l2 = l3 = l4 = l. The determinant� of the coefficient matrix of
the system in Equation (14) is found in this case to be of the form

� = l2[(p1 + p2)(p3 + p4) + p3p4]:

When solving the system of Equation (14) and substituting thereupon values of the coeffi-
cientsEi1 andEi2 found in Equation (13), we finally obtain

u1(x) =

Z x

0

s� x

p1
f1(s)ds+

Z l

0

x

��p1
f�� � s[p2(p3 + p4) + p3p4]gf1(s)ds

+

Z l

0

xs

��
(p3 + p4)f2(s)ds+

Z l

0

x

��
(lp3 + sp4)f3(s)ds

+

Z l

0

xs

��
p3f4(s)ds; (15)

u2(x) =

Z l

0

xs

��
(p3 + p4)f1(s)ds+

Z x

0

s� x

p2
f2(s)ds

+

Z l

0

x

��p2
f�� � s[p1(p3 + p4) + p3p4]gf2(s)ds

+

Z l

0

x

��
(lp3 + sp4)f3(s)ds+

Z l

0

xs

��
p3f4(s)ds; (16)

u3(x) =

Z l

0

s

��
(lp3 + xp4)f1(s)ds+

Z l

0

s

��
(lp3 + xp4)f2(s)ds

+

Z x

0

s� x

p3
f3(s)ds+
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+

Z l

0

1
��p3

[l(p1 + p2 + p3)� s(p1 + p2)](lp3 + xp4)f3(s)ds

+

Z l

0

s

��
[l(p1 + p2 + p3)� x(p1 + p2)]f4(s)ds; (17)

u4(x) =

Z l

0

xs

��
p3f1(s)ds+

Z l

0

xs

��
p3f2(s)ds

+

Z l

0

x

��
[l(p1 + p2 + p3)� s(p1 + p2)]f3(s)ds

+

Z x

0

s� x

p4
f4(s)ds+

Z l

0

x

��p4
[�� � sp3(p1 + p2)]f4(s)ds; (18)

where, for notational convenience, we write�� = �=l.
Thus, the solution of the boundary-value problem posed by Equations (7–12) is finally

expressed in the form of the integral in Equation (4). This allows the entriesgij(x; s) of the
matrix of Green’s typeG(x; s) of the corresponding homogeneous problem to be read off
from the integral representations in Equations (15–18). We exhibit below the entries of the
first column ofG(x; s)

g11(x; s) =
1

��p1

(
xf�� � s[p2(p3 + p4) + p3p4]g; for x 6 s;

sf�� � x[p2(p3 + p4) + p3p4]g; for x > s;

g21(x; s) =
xs

��
(p3 + p4); g31(x; s) =

s

��
(lp3 + xp4); g41(x; s) =

xs

��
p3;

which represent the response of the entire assembly to a unit source acting at the source
point s located in the first rod. The rest of the entries ofG(x; s) can also be read off from
Equations (15–18).

4.2. BENDING OF MULTI-SPANED BEAMS

The sphere of productive utilization of the methods proposed in this study for the construction
of matrices of Green’s type is not limited to potential problems. They can also be applied to
different phenomena in mechanics. In order to address this issue, we will show in this section
how to obtain influence matrices of a unit transverse concentrated force for multi-spaned
Kirchhoff beams.

Consider a compound(EI1 andEI2) cantilever beam overhanging an intermediate elastic
support with a spring constantk� as shown in Figure 3.

To come forth with the construction procedure, we formulate the following three-point
posed boundary-value problem

d4w1(x)

dx4 = �
q1(x)

EI1
= �f1(x); x2 (�a;0); (19)

d4w2(x)

dx4 = �
q2(x)

EI2
= �f2(x); x2 (0; a); (20)
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Figure 3. A compound cantilever beam overhanging an elastic support.

w1(�a) =
dw1(�a)

dx
= 0;

d2w2(a)

dx2 =
d3w2(a)

dx3 = 0; (21)

w1(0) = w2(0);
dw1(0)

dx
=

dw2(0)
dx

; (22)

EI1
d2w1(0)

dx2 = EI2
d2w2(0)

dx2 ; (23)

EI1
d3w1(0)

dx3 � kw1(0) = EI2
d3w2(0)

dx3 + kw2(0); k = 2k� (24)

for the deflection functionsw1(x) andw2(x) to be determined on the edges[�a;0] and[0; a]
of the corresponding graph, respectively.

Following the technique of the method of variation of coefficients, we present the general
solutions of Equations (19) and (20) in the form

w1(x) =

Z x

�a

(s� x)3

6
f1(s)ds+H1 +K1x+ L1x

2 +M1x
3

and

w2(x) =

Z x

0

(s� x)3

6
f2(s)ds+H2 +K2x+ L2x

2 +M2x
3:

In computing values of the undetermined coefficients above, we take advantage of the set
of boundary and contact conditions imposed by Equations (21–24). This eventually yields

w1(x) =

Z x

�a

(s� x)3

6
f1(s)ds

+

Z 0

�a

(a+ x)2

6p
fks[x(s2 � a2)� 2a(s2 + ax)]

+3EI1[(x+ a)� 3(s+ a)]gf1(s)ds

+�

Z a

0

(a+ x)2

2p
fEI1[(a+ x)� 3(a+ s)]� ka2xsgf2(s)ds (25)

and

w2(x) =

Z 0

�a

(a+ s)2

2p
fEI1[(a+ s)� 3(x+ a)]� ka2sxgf1(s)ds
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+

Z x

0

(s� x)3

6
f2(s)ds+

Z a

0

1
6p
fpx2(x� 3s)� 3�ka4xs

�3EI2a[a(2a+ 3s) + 3x(a+ 2s)]gf2(s)ds; (26)

wherep = (2a3k + 3EI1) and� represents the ratioEI2=EI1.
By virtue of Theorem 2, it follows, from Equations (25) and (26), that the branchg+11(x; s)

of the entryg11(x; s) of the matrix of Green’s type to the homogeneous problem corresponding
to that in Equations (19–24), which is valid for�a 6 x 6 s 6 0, can be written as

g+11(x; s) =
(a+ x)2

6pEI1
fks[x(s2 � a2)� 2a(s2 + ax)] + 3EI1[(x+ a)� 3(s+ a)]g:

Notice that the factor ofEI1 appears in the denominator ofg+11(x; s) because the actual
right-hand term of Equation (19) is�q1(x)=EI1.

For�a 6 s 6 x 6 0, we obtain the other branch ofg11(x; s) in the form

g�11(x; s) =
(a+ s)2

6pEI1
fkx[s(x2 � a2)� 2a(x2 + as)] + 3EI1[(s+ a)� 3(x+ a)]g:

The entryg12(x; s) is defined forx2 [�a;0] ands2 [0; a] and is presented as

g12(x; s) =
(a+ x)2

2pEI2
fEI1[(a+ x)� 3(a+ s)]� ka2xsg:

For the entryg21(x; s) defined fors2 [�a;0] andx2 [0; a], we have

g21(x; s) =
(a+ s)2

2pEI1
fEI1[(a+ s)� 3(x+ a)]� ka2sxg:

Finally, forg+22(x; s), with both variablesx ands belonging to the interval[0; a] andx 6 s,
we obtain

g+22(x; s) =
1

6pEI2
fpx2(x� 3s)� 3�ka4xs� 3EI2a[a(2a+ 3s) + 3x(a+ 2s)]g;

while for g�22(x; s) with x > s, we have

g�22(x; s) =
1

6pEI2
fps2(s� 3x)� 3�ka4xs� 3EI2a[a(2a+ 3x) + 3s(a+ 2x)]g:

Clearly, the matrix of Green’s type just obtained can be identified with the influence matrix
of a transverse concentrated unit force for the beam under consideration.

For the second example in this section, we determine the response of the compound multi-
spaned beam depicted in Figure 4 to a transverse concentrated forceP subjected at a points0

in the left-hand span.
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Figure 4. A compound cantilever beam overhanging two supports.

In doing so, we consider the following multi-point posed boundary value problem

d4w1(x)

dx4 = �
q1(x)

EI1
; x2 (0; a); (27)

d4w2(x)

dx4 = �
q2(x)

EI2
; x2 (a;2a); (28)

d4w3(x)

dx4 = �
q3(x)

EI3
; x2 (2a;3a); (29)

w1(0) =
dw1(0)

dx
= 0;

d2w3(3a)
dx2 =

d3w3(3a)
dx3 = 0; (30)

w1(a) = w2(a) = 0;
dw1(a)

dx
=

dw2(a)

dx
; (31)

EI1
d2w1(a)

dx2 = EI2
d2w2(a)

dx2 ; (32)

w2(2a) = w3(2a) = 0;
dw2(2a)

dx
=

dw3(2a)
dx

; (33)

EI2
d2w2(2a)

dx2 = EI3
d2w3(2a)

dx2 (34)

stated on the corresponding three-edge graph.
Following again the standard procedure of the method of variation of coefficients, when

solving the boundary-value problem posed by Equations (27–34), we come up with a 3�3
matrix of Green’s typeG(x; s) (that is, the influence matrix of a unit transverse concentrated
force for the beam under consideration). Since the procedure in this case is quite cumbersome,
we omit its details and present just the final result.

For the branchg+11(x; s) of g11(x; s), which is valid for bothx ands belonging to the
interval[0; a] and 06 x 6 s 6 a, we obtain
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g+11(x; s)

=
x2(a� s)

6pa3 f2[s(2a� s)(x� 3a) + 2a2x] + 3�1(a� s)[x(a+ s) + s(x� 3a)]g;

while the other branchg�11(x; s) of g11(x; s), which is valid for 06 s 6 x 6 a, is found to be
in the form

g�11(x; s)

=
s2(a� x)

6pa3 f2[x(2a� x)(s� 3a) + 2a2s] + 3�1(a� x)[s(a+ x) + x(s� 3a)]g;

wherep = 4EI1 + 3EI2 and�1 = EI2=EI1.
For the entryg21(x; s) whose arguments have different domains, namelyx2 [a;2a] and

s2 [0; a], we obtain

g21(x; s) =
1

2pa3s
2(a� s)(x� a)(x� 2a)(x� 3a)

and forg31(x; s), with x2 [2a;3a] ands2 [0; a], we have

g31(x; s) =
1

2pa
s2(a� s)(2a� x):

Clearly, the scalar multiplesPg11(x; s0),Pg21(x; s0), andPg31(x; s0) represent the deflec-
tion functionsw1(x), w2(x), andw3(x), defined in the left-hand, the intermediate, and the
right-hand spans of the beam, respectively. These deflections are caused by the transverse force
of magnitudeP concentrated at the points0 in the left-hand span. Based on this and recalling
the standard relations from beam theory, we can readily obtain explicit expressions for the
bending moments and shear forces occurred in this beam, by appropriately differentiating the
deflection functions obtained.

Thus, the particular problem posed in the present example is formally solved. Indeed, the
response of this beam to the forceP applied to an arbitrary point in its left-hand span has
already been found. If, however, an external load is also applied to the other span (or spans)
of the beam under consideration, then the rest of the entries of the influence matrix ought to
be available. With this in mind, we present all these below.

The entryg12(x; s), domains of the arguments for which arex2 [0; a] ands2 [a;2a], is
obtained in the form

g12(x; s) =
1

2pa3x
2(x� a)(a� s)(2a� s)(3a� s):

The branchg+22(x; s) of g22(x; s), with both variablesx ands belonging to[a;2a] and
x 6 s, is expressed as

g+22(x; s) =
1

6�1pa3(2a� s)(a� x)f2(x� a)[s(s� 4a)(x� 4a)

+a2(x� 10a)]� 3�1a
2[(s� 3a)(s� a) + (x� a)2]g;
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while the other branch ofg22(x; s), valid for s 6 x, is found to be in the form

g�22(x; s) =
1

6�1pa3(2a� x)(a� s)f2(s� a)[x(x� 4a)(s� 4a)

+a2(s� 10a)]� 3�1a
2[(x� 3a)(x� a) + (s� a)2]g:

The entryg32(x; s), with x2 [2a;3a] ands2 [a;2a], is found to be of the following form

g32(x; s) =
1

2�1pa
(s� a)(s� 2a)(x� 2a)[2(a� s)� �1s]:

Forg13(x; s), with x2 [0; a] ands2 [2a;3a], we obtain

g13(x; s) =
1

2pa
x2(a� x)(2a� s):

The entryg23(x; s), with x2 [a;2a] ands2 [2a;3a], is expressed as

g23(x; s) =
1

2�1pa
(x� a)(x� 2a)(s� 2a)[2(a� x)� �1x]:

Finally, for the branchg+33(x; s) of g33(x; s), with 2a 6 x 6 s 6 3a, we obtain

g+33(x; s) = (x� 2a)
�

1+ �1

�1p
a(2a� s) +

(x� 2a)
6EI3

[(x+ a) + 3(a� s)]

�
;

while for the other branchg�33(x; s) of g33(x; s), which is defined for 2a 6 s 6 x 6 3a, we
have

g�33(x; s) = (s� 2a)
�

1+ �1

�1p
a(2a� x) +

(s� 2a)
6EI3

[(s+ a) + 3(a� x)]

�
:

Notice that the influence matrix just presented being obtained once, allows us then to com-
pute components of a stress-strain state caused by any reasonable combinations of transverse
and bending loads applied to the beam. This highlights one of the key points of the influence
function method.

Let, for example, the beam be subjected to continuously distributed transverse loadsq1(x),
q2(s), andq3(x) applied to its left-hand, intermediate, and the right-hand span, respectively.
The influence function method yields then a straightforward formula

wj(x) =

Z a

0
gj1(x; s)q1(s)ds+

Z 2a

a
gj2(x; s)q2(s)ds

+

Z 3a

2a
gj3(x; s)q3(s)ds; (j = 1;2;3)

for the deflection caused by these loads throughout the entire beam. The subscriptj represents
here the span number. We can then compute the bending moments and the shear forces in
any cross-section of the beam by correspondingly differentiating the expression above with
respect tox. If the loading functionsq1(x), q2(x), andq3(x) are simple in form, then the
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integration above can be carried out analytically, otherwise approximate quadrature formulas
should be applied for numerical integration.

4.3. FIELDS OF POTENTIAL ON JOINED SHELLS OF REVOLUTION

Based on the material of the present study and recalling the technique presented in [12,
pp. 79–105], we will derive here the influence matrix of a point source for a two-dimensional
field of potential on a joined shell of revolution.

Consider a thin hemispherical shell
1 = f(a; '; #): 0 6 ' 6 1
2�; 0 6 # < 2�g, joined to

a thin annular plate
2 = f(r; #): a 6 r 6 b; 0 6 # < 2�g, and to another thin hemispherical
shell
3 = f(a; '; #): 1

2� 6 ' 6 �; 0 6 # < 2�g to form a ‘saturn’ type construction. Let
each of the fragments be composed of a homogeneous conductive material. The thickness of
the construction is assumed to be negligibly small compared to the radiusa of the hemispheres
and to the widthb� a of the annular plate.

Assume the parametrization of the spherical surfaces
1 and
3 as given by geographic
coordinates' and# in the form

x = a sin' cos#; y = a sin' sin#; z = a cos'

while the annular region
2 is assumed to be parametrized by polar coordinatesr and#. For
the sake of simplicity in the development that follows, we assume a unit radiusa = 1 of
hemispherical shells
1 and
2.

Clearly, the two-dimensional field of potential in this construction can be determined by
the following system of PDEs

1
sin'

@

@'

�
sin'

@v1('; #)

@'

�
+

1
sin2'

@2v1('; #)

@#2 = 0; ('; #)2
1; (35)

1
r

@

@r

�
r
@v2(r; #)

@r

�
+

1
r2

@2v2(r; #)

@#2 = 0; (r; #)2
2; (36)

1
sin'

@

@'

�
sin'

@v3('; #)

@'

�
+

1
sin2'

@2v3('; #)

@#2 = 0; ('; #)2
3; (37)

subjected to the boundary and contact conditions written as

jv1(0; #)j <1; v2(b; #) = 0; jv3(�; #)j <1; (38)

v1(
1
2�; #) = v2(a; #) = v3(

1
2�; #); (39)

p1
@v1(

1
2�; #)

@'
� p2

@v2(a; #)

@r
� p3

@v3(
1
2�; #)

@'
= 0; (40)

wherepi, (i = 1;2;3) represent the conductivities of the materials of which the fragments
i

are composed.
The conditions of boundedness, subjected at the poles' = 0 and' = � of the hemispheres


1 and
3, respectively, reflect the singularity of the coefficients of Equation (35) and (37) at
these points.

Notably, the functionsv1('; #); v2('; #); andv3('; #); are 2�-periodic with respect to
the variable#. This allows the influence function of a point source for the entire construction
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Figure 5. The graph hosting the boundary value problem in Equations (42)–(47).

(which can be identified with the matrix of Green’s typeG(x; y; �; �) = (Gij(x; y; �; �));
(i; j = 1;2;3) for the boundary value problem in (35)–(40)) to be presented (see [12, pp. 100–
105]) by means of the trigonometric series

Gij(x; y; �; �) =
1
�

"
1
2g

0
ij(x; �) +

1X
n=1

gnij(x; �) cos(n(y � �))

#
: (41)

wherex andy represent the coordinates of the observation point, while� and� represent the
coordinates of the source point.

The coefficientsgnij(x; �) of the above expansion represent the entries of the matrices
of Green’s type of the four-point posed boundary-value problems for the set of systems of
ordinary differential equations

1
sin'

d
d'

�
sin'

dv1n(')

d'

�
�

n2

sin2'
v1n(') = 0; 0< ' < 1

2�; (42)

1
r

d
dr

�
r

dv2n(r)

dr

�
�
n2

r2 v2n(r) = 0; a < r < b; (43)

1
sin'

d
d'

�
sin'

dv3n(')

d'

�
�

n2

sin2'
v3n(') = 0; 1

2� < ' < �; (44)

stated on the graph shown in Figure 5.
The system in Equations (42)–(44) is subjected to the boundary conditions

jv1n(0)j <1; v2n(b) = 0; jv3n(�)j <1 (45)

at the endpointsE1, E2, andE3 of the graph and to the contact conditions

v1n(
1
2�) = v2n(a) = v3n(

1
2�); (46)

p1
dv1n(

1
2�)

d'
� p2

dv2n(a)

dr
� p3

dv3n(
1
2�)

d'
= 0 (47)

at the graph’s vertexV1.
The statement in Equations (42)–(47) results from the procedure of separation of variables

as being applied to the original problem posed by Equations (35)–(40).
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The matrices of Green’s type for the boundary-value problems in Equations (42)–(47) can
be constructed, for example, by means of the method of variation of coefficients. Notably, the
casen = 0 requires an individual treatment, since the fundamental solution set for this case
is different of that forn 6= 0. The entriesg0

ij(x; �) are found in this case to be in the form

g0
11('; ) =

(
log(b cot(1

2 )); ' 6  ;

log(b cot(1
2'));  6 '

;

g0
12(�; �) = log(b=�); g0

13('; ) = log(b);

g0
21(r;  ) = log(b=r); g0

22(r; �) =

(
log(b=�); r 6 �;

log(b=r); � 6 r
;

g0
23(r;  ) = log(b=r);

g0
31('; ) = log(b); g0

32('; �) = log(b=�);

g0
33('; ) =

(
log(b tan(1

2')); ' 6  ;

log(b tan(1
2 ));  6 ':

For n = 1;2;3; : : : ; the entries of the matrix of Green’s type of the problem posed by
(42)–(47) are obtained as follows

gn11('; ) =
1

2n�

(
tann(1

2')[� cotn(1
2 )� (bn + b�n) tann(1

2 )]; ' 6  

tann(1
2 )[� cotn(1

2')� (bn + b�n) tann(1
2')];  6 '

;

gn12('; �) =
1
n�

��
b

�

�n

�

�
�

b

�n�
tann(1

2');

gn13('; ) =
bn � b�n

n�
tann(1

2') cotn(1
2 );

gn21(r;  ) =
1
n�

��
b

r

�n

�

�
r

b

�n�
tann(1

2 );

gn22(r; �) =
1

2n�

(
(3rn � r�n)[(b=�)n � (�=b)n]; r 6 �

(3�n � ��n)[(b=r)n � (r=b)n]; � 6 r
;

gn23(r;  ) =
1
n�

��
b

r

�n

�

�
r

b

�n�
cotn(1

2 );

gn31('; ) =
bn � b�n

n�
cotn(1

2') tann(1
2 );

gn32('; �) =
1
n�

��
b

�

�n

�

�
�

b

�n�
cotn(1

2');

gn33('; ) =
1

2n�

(
cotn(1

2 )[� tann(1
2')� (bn + b�n) cotn(1

2')]; ' 6  

cotn(1
2')[� tann(1

2 )� (bn + b�n) cotn(1
2 )];  6 '

;
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where� = 3bn � b�n.
Partial summation of the series in Equation (41) with the coefficientsgnij(x; s) just presented

can be accomplished in compliance with the method whose detailed description is available in
[12, pp. 20–35]. This allows the singular components of the matrix of Green’s typeG(x; y; �; �)
to be expressed in elementary functions, while its regular components are expressed in the
form of uniformly convergent series. Below we find the entriesGi1 of the first column of this
matrix

G11('; #; ; �) = �
1

12�

(
2

1X
n=1

bn + b�n

nb2n�
�n	n cos(n(#� �))

� log
b2(1� 2�	�+�2	2)(b4 � 2b2�	�+�2	2)

(�2 � 2�	�+	2)3

)
;

G21(r; #; ; �) =
1

6�

(
2

1X
n=1

1
nb2n�

��
b

r

�n

�

�
r

b

�n�
	n cos(n(#� �))

+ log
b4 � 2rb2	�+ r2	2

br(r2 � 2r	�+	2)

)
;

G31('; #; ; �)

= �
1

6�

"
2

1X
n=1

bn � b�n

nb2n�
��n	n cos(n(#� �)) + log

�2b4 � 2b2�	�+	2

b(�2 � 2�	�+	2)

#
;

where� = tan(1
2'), 	 = tan(1

2 ), and� = cos(#� �).
These entries represent the response of the entire construction to the unit source acting on

an arbitrary source point( ; �)2
1. For the sake of simplicity, we assumed here that each of
the fragments
i of the construction is composed of the same material, that is,p1 = p2 = p3.

5. Closing remarks

In the past, the author has undertaken several attempts to adequately extend the traditional
Green’s function formalism to multi-point posed boundary-value problems of continuum
mechanics. However, those attempts were successful only for limited problem classes. It was
obvious that different approaches are required to attain a reasonable level of generality. It
appears at the moment that the graph-theory framework implemented for this purpose in the
present study represents an appropriate basis for approaching the problem. It provides a level
of consistency and systematization pertinent to the case.

The notion of the matrix of Green’s type is introduced here as one that can be regarded as an
adequate extension of the conventional Green’s function notion to multipoint posed boundary-
value problems of a special kind. Thus, matrices of Green’s type, defined in this study, allow a
direct implementation of the Green’s function formalism to continuum mechanics phenomena
occurring in complex assemblies composed of different homogeneous elements.
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